科研实习项目收获
科研实习实验室类别

专业

物理 化学 微电子 计算机/软件/通信 自动化 生物/基因/生物物理 自然科学 人文科学 电子学 地理 数学 材料
  • 超导国家重点实验室
  • 表面物理国家重点实验室
  • 磁学国家重点实验室
  •   超导电性是指许多材料在低温下电阻完全消失的一种物理现象。超导电性的研究一直是凝聚态物理的重要课题,对基础理论创新和应用技术发展两方面都有着重要的意义。自1911年荷兰物理学家Onnes发现超导电性以来,已经有5次诺贝尔物理学奖授予和超导相关的研究。1986年铜氧化合物超导体的发现,掀起了全球高温超导研究的热潮。

      实验室的研究方向涵盖了超导体研究的各个方面,即新超导体的探索,高温超导机理和相关物理研究,薄膜制备以及超导薄膜器件应用研究等。实验室的工作一直处于国际超导研究的前沿,频繁在国际权威杂志上发表有影响的论文并多次在国际超导大会上作邀请报告。

    我要咨询

      实验室以物质表面和界面为主要研究对象,使用高精度原子尺度实验工具,与理论方法密切结合,开展与信息科学、纳米科学和能源科学有直接联系的材料制备、物性表征、功能调控等方面的研究。当前研究集中于发展原子级精度控制方法制备低维与纳米结构,发展多种自由度、高分辨率新型表征技术,以此为基础研究表面/界面各种局域效应及其集体行为、微观结构/掺杂/缺陷等对体系宏观性质的影响、以及相关的电子激发态动力学特征等。随着新材料的不断出现、材料结构的尺度和维度向着更小的方向发展,表面物理研究的重要性变得日益突出,已经成为一个交叉学科的新的生长点。

    我要咨询

      实验室的研究方向是:以磁性物理的基础研究为指导,以有重大应用背景的材料--稀土过渡族金属间化合物和氧化物、自旋电子学等为重点,开展物质的基本磁性和磁电、磁热、磁光等效应研究,探讨从微观电子结构、介观、界面及复合相到宏观磁性之间的内在联系,探索新材料和新的人工结构材料的磁性物理学。实验室现分五个课题组开展相应的工作:
    1)散裂中子源设计;
    2)自旋电子学材料、物理及器件研究;
    3)磁性金属氧化物/化合物量子序调控及相关效应研究;
    4)磁性纳米结构与磁共振研究;
    5)新型磁性功能材料的探索和研究。

    我要咨询
  • 光物理重点实验室
  • 先进材料与结构分析实验室
  • 纳米物理与器件实验室
  •   实验室为从事光物理基础研究及应用基础研究的实体,主要研究方向是光与物质相互作用的基础研究,同时开展新材料在光学,尤其是在光子学领域的应用基础研究,即一方面重视光物理本身的研究,另一方面将现代光学的方法和技术引入凝聚态物理和材料科学中去,开拓几种新材料在高技术产业中的可能应用。实验室瞄准国际科学前沿,在激光物理、光子晶体、非线性光学、量子光学、强场物理及超快过程研究等方面开展了在国内外有相当影响的基础和应用研究工作。在激光器件和新型薄膜材料研究上也有较强的力量,能够研制并提供多种超短脉冲激光器件和全固态激光器件,并取得了具有国际先进水平的成果。此外将光学和物理学的方法、手段应用于生物系统也是目前正在发展的重点学科方向。与凝聚态物理与材料科学紧密结合是光物理实验室研究的重要特点。

    我要咨询

      实验室在深入开展电子显微学理论和实验方法研究的基础上,注重其在凝聚态物理学、材料科学及生命科学中的应用。目前实验室的研究工作主要涉及电子全息、电子能量损失谱,高分辨电子显微学,会聚束电子衍射,准晶、纳米材料微结构分析、多种无机材料的结构和相图,巨磁电阻多层膜及隧道结以及强关联材料的电荷有序化研究。利用计算机模拟和理论模型化方法对实验的数据进行深入分析。

    我要咨询

      实验室致力于纳米材料及其物理以及其在信息器件和能源器件中应用的基础研究,目前由四个研究组构成,实验室的运作特色是加强各研究组之间的交叉合作,发挥集体智慧,凝炼明确的科研目标,力争取得具有重要影响的创新性的科研成果。主要的研究方向是:以纳米材料的合成和生长为基础,利用先进的表征手段,研究其物性以及制备纳米材料功能器件,开展纳米材料在信息、能源、及生命科学等领域内的应用基础研究。四个研究组的研究方向包括纳米信息材料和器件物性、单分子及纳米结构的电子输运研究、纳米器件及其物理、低维电子系统。

    我要咨询
  • 极端条件物理重点实验室
  • 凝聚态理论与计算重点实验室
  • 软物质与生物物理重点实验室
  •   在传统科学日臻完善的今天,为了能创造出更多的机遇以取得新的研究突破,非常规的极端实验条件变得越来越重要。实验室是由原中科院极低温物理开发实验室和物理所部分低温、高压方面的研究组联合组建而成的,在利用这些极端条件进行各种物理问题的研究方面已积累了丰富的经验,并广泛应用各种极端条件的综合交叉,具有自己的研究特色。研究方向包括强关联电子体系的低温物性研究、重费米子材料的理论和实验研究等。

    我要咨询

      实验室自成立以来,本着"开放、流动、竞争、联合"的创办方针,努力造就超越前代学术水平的优秀青年理论物理学研究人才,并积极开展与国际各理论物理中心的交流,已初步拥有一支精干研究队伍。研究方向包括低维多体凝聚态系统的理论研究、固体与纳米材料物性计算研究、计算凝聚态物理、低维受限体系的新奇量子现象研究、玻色-爱因斯坦凝聚及量子信息等。

    我要咨询

      软物质(Soft matter)或称软凝聚态物质(Soft condensed matter)是指处于固体和理想流体之间的复杂态物质。它的基本特性是对外界微小作用的敏感性、非线性响应、自组织行为等。软物质在介观尺度(约10-10000nm)范围内,通过相互作用可形成从简单的时空有序到复杂生命体一系列的结构体和动力学系统。软物质一般由大分子或基团组成,如液晶、聚合物、胶体、膜、泡沫、颗粒物质、生命物质等,在自然界、生命体、日常生活中广泛存在。构成生物体的物质大多为软物质,如细胞、蛋白质、DNA等。 近来,软物质物理已成为国际上受到普遍重视的新学科领域。软物质的研究横越物理、化学、生物三大学科,特别是软物质物理研究的深入开展,是物理科学通向生命科学的桥梁。软物质物理代表了21世纪凝聚态物理发展的重要趋势。

    我要咨询
  • 固态量子信息与计算实验室
  • 清洁能源重点实验室
  • 崔琦实验室
  •   当前,信息技术的发展遇到了三大瓶颈。首先,随着信息全球化的飞速发展,世界的信息存储需求量不断激增,信息存储器件的存储容量需求在大幅度提高(信息存储瓶颈);其次,随着信息处理芯片集成度的不断提高,经典计算机的运算速度和计算能力将达到极限(计算能力瓶颈);第三,人类计算能力的不断提高和数学的不断进步,使得现有的信息安全系统面临严重的威胁(信息安全瓶颈)。实验室将瞄准信息时代我国社会发展的重大需求,探索建立我国具有自主核心技术的信息存储容量大、信息处理速率高和信息传输绝对安全的信息的量子技术和工程体系。

    我要咨询

      实验室被认定为"新能源材料与器件北京市重点实验室"。研究领域包括:锂二次电池与燃料电池、太阳能材料及器件、III-V半导体外延材料与器件(LED)、氧化物半导体外延材料与器件。

    我要咨询

      实验室以普林斯顿大学崔琦 (Daniel Chee Tsui) 教授的名字命名,主要从事于低维(0-2维)凝聚态物理系统的实验研究。由于发现二维电子系统中的分数量子霍尔效应,崔琦教授曾于1998年获得诺贝尔物理学奖。实验室的主要研究方向有:二维电子系统物性、极端条件下的新物质态、人工纳米结构中的量子调控、半导体自旋物理学和半导体器件应用,等等。

    我要咨询
  • 功能晶体研究与应用实验室
  • 可再生能源发电技术实验室
  • 电力电子与电能变换技术实验室
  •   研究工作主要集中在宽禁带半导体晶体生长和新功能晶体材料探索方面,近年来在SiC晶体生长和加工、铁基新超导体和硼酸盐晶体、掺杂宽禁带半导体的物性以及SiC衬底上外延石墨烯及其性能等方面获得了一系列基础研究成果,同时在高技术产业化领域也取得了重大突破,形成了鲜明的特色。

    我要咨询

      可再生能源发电技术实验室于70年代末在国内率先开展了可再生能源发电技术的研究开发工作,是国内最早研究可再生能源发电的単位之一, 研究方向涉及:风力发电、光伏发电、太阳能热发电、太阳能电池、海洋能发电以及光伏发电系统和风力发电系统质量监测 。

    我要咨询

      电力电子与电能变换技术实验室面向国家能源、电力和交通的战略需求.重点解决电力电子与电能变換领域的重大应用基础理论和战略高技术问题。电力电子与电能变换技术实验室的研究方向:
    (1)大功率电力电子与直线要动技术,包括高压大功車电能变换技术、新型电力电子装置及应用、大功率直线驱动技术及前沿探索;
    (2)高功率密度电气驱动及电动汽车技术,包括高功率密度发电系统技术、高功率密度电力电子装各技术、特种电机和功率电子模块封装技术;
    (3)极端电磁环境科学技术,包括特种电源技术、大电流放电及其向用、放电等离子体及其应用、高压与绝缘技术;
    (4)车用能源系统,与控制技术,包括车用网络总线与电动汽车整车控制、动力蓄电池管理系统、电磁差容技术、非接触式充电技术,以及智能用电技术。

    我要咨询
  • 电力设备新技术实验室
  • 直流电网科学技术实验室
  • 超导与新技术材料应用研究实验室
  •   实验室开创性地发展了常温及自循环蒸发冷却的概念,掌握了大型电机蒸发冷却的一系列关键技术,拥有蒸发冷却技术的自主知识产权,处于国际领先地位。七十年代以来,与产业部门合作,研制成功1.2MW、50MW蒸发冷却汽轮发电机和10MW、50MW、400MW蒸发冷却水轮发电机,为我国电机和电力工业的发展做出了重要贡献,获多项国家和院部级奖励,建立了较完备的研究实验条件,形成了我国唯一的大型电机蒸发冷却技术实验室,拥有200MW汽轮发电机足尺内冷线棒的蒸发冷却强迫循环系统实验平台、400MW蒸发冷却水轮发电机足尺线棒的蒸发冷却自循环系统实验平台和1.2MW定、转子双蒸发冷却的汽轮发电机等实验装备。目前开展的科研工作有:蒸发冷却汽轮发电机和水轮发电机的技术平台研究、300MW蒸发冷却汽轮发电机前导机组的研究和700MW蒸发冷却水轮发电机的研究,及其在国家重大电站建设中的示范应用。

    我要咨询

      无线输电能不能成为现实?超级电容器借助电力电子技术能否成为新一代的电力储能系统?飞轮储能这种高效能又无污染的新型储能技术,是否是一种解决电能质量问题的最佳方案?微型电网能否成为未来分布式供能在配电网中的主要组织形式?新型高压直流输电系统能否将全控型器件代替半控型器件,使换流器能向无源网络供电?直流电网科学技术实验室人在思索,并将通过自己的努力给出答案。

      实验室的科研方向:(1)无线输电技术的基础研究;
    (2)分布式电力系统研究及仿真平台研制;
    (3)定制电力技术应用基础研究。

    我要咨询

      超导与新技术材料应用研究实验室的研究方同主要包括超导与能源源新材料的制备技术、超导电力科学技术、基于新型电工材料的应用探素和新型输电技术、超导强磁场技术、微纳加工与检测技术、智能传感技术、储能电池技术以及智能电气设备技术等。本实验室致力于解决超导电工学及其应用、微纳加工领域、智能电气领域的关键科学技术同题.促进超导与能源新材料技术、超导电力与新型输电技术和超导磁体技术、徴纳加工技术、智能电气设备技术的实用化,提升我国电工技术的自主创新能力,为能源、交通、医疗、国家安全等的可持续发展和重大科学工程提供科学技术支撑。

    我要咨询
  • 生物电磁学与电磁探测技术实验室
  • 国家能源风电叶片实验室
  • 燃气轮机实验室
  • 物电磁学与电磁探测技术实验室以电磁场理论和电磁探测技术为核心,开展生物电磁技术、工程电磁场及其应用、电磁信息检测与成像技术等研究。实验室的研究方向:(1)生物电磁技术,包括生物电磁效应与电磁检测技术及其相关医疗设备、再生医学设备与技术;
    (2)工程电磁场及其应用,包括多场智能探测技术、电机与电磁技术、超传统能源与电力技术、工程电磁场及相关电磁新技术的前沿探索研究;
    (3)电磁信息检测与成像技术,包括电磁信号检测与传感、电磁成像与应用、特种磁体机构研究。

    我要咨询

    国家能源风电叶片实验室的建设目标是建设兆瓦级以上大型及超大型风电叶片设计、制造及工艺技术为主的核心技术研发创新平台;以建设高水平的、可持续的科技创新能力为主线,为风电叶片产业的发展提供核心技术和装备;建设世界级的风电叶片研发中心及公共实验平台;成为国际知名的风电叶片检测中心;成为风电叶片研究与制造领域有影响的国际合作科研平台,并成为国际重要的风电技术研究基地和高层次人才培养基地。

    实验室的研究领域:风能利用技术、新型燃气轮机关键技术的基础与应用研究。实验室的研究方向:(1)风能方向:适合中国风资源特点的风力机专用翼型研究;反映中国气候与地理特点的风资源评估与风电场优化设计技术;风电叶片检测技术及检测标准研究;大型风电叶片三维设计方法与设计体系研究;风能海洋能一体化综合利用技术研发。
    (2)新型燃气轮机方向:燃气轮机总体设计技术;新型压气机研究;对转涡轮研究;短环形燃烧室研究;微能源系统的气动研究。

    我要咨询

      燃气轮机实验室的研究领域:以先进轻型动力技术研发及系统集成为主线,进行小型涡扇发动机和车用燃气轮机的基础研究、关键技术研发、系统集成创新及新产品研制。

      燃气轮机实验室的研究方向:
    (1)航空发动机结构设计及系统集成:高负荷高效率宽裕度风扇/压气机技术、组合压气机(多级轴流+离心、斜流+离心或双级离心)设计技术;航空发动机高温升燃烧室设计技术;航空发动机燃烧室的污染物(NOx、碳烟、CO等)的生成原理及污染排放的控制技术;综合考虑气动性能、冷却特性、叶片可靠性的透平冷却设计技术;型号研发与关键技术验证。
    (2)地面燃气轮机结构设计及系统集成:高功率密度车用燃气轮机总体结构设计;三转子燃气轮机转子动力学研究;高效闭式离心叶轮强度振动研究和结构设计;紧凑式多燃料环形回流燃烧室结构设计;动力涡轮可调导叶调节规律研究;车用燃气轮机高效除尘机构及电调技术研究;全电车辆高速电机与燃气轮机集成技术研究等,型号研发和关键技术验证。

    我要咨询
  • 循环流化床实验室
  • 分布式供能与可再生能源实验室
  • 储能研发实验室
  •   循环流化床实验室的研究领域:循环流化床技术研发,主要是其在煤、生物质、废弃物等多种燃料的高效清洁燃烧与高效梯级转化利用中的应用,以及综合节能减排技术的研发。

      循环流化床实验室的研究方向:
    (1)循环流化床燃煤大型化研究与开发:大型循环流化床炉膛内气固流动、燃烧和换热均匀性研究,大容量超临界炉型研究,超临界参数热力分配、关键技术与系统集成技术研究开发;
    (2)循环流化床节能环保锅炉技术:节能型循环流化床锅炉技术和循环流化床NOx超低原始排放技术,应用于煤、碳基燃料、生物质、污泥等多种燃料;
    (3)循环流化床煤气化技术:面向工业燃气的常压循环流化床煤气化技术研发及系统集成应用,加压循环流化床煤气化技术开发;
    (4)低温热解与燃烧技术:面向煤炭资源高值化利用的循环流化床热解-燃烧耦合技术研发;
    (5)煤粉的高效低排放燃烧技术:基于煤的燃料预热燃烧技术、循环流化床富氧燃烧技术;
    (6)多相流的反应、测量与模拟计算:多相流干燥、包衣反应,多相流无接触测量,多相流模拟计算;
    (7)燃烧化学及燃烧诊断技术:燃烧化学、催化燃烧、燃烧诊断。

    我要咨询

      分布式供能与可再生能源实验室的研究领域能量综合梯级利用原理与方法,多能源互补机理与分布式供能系统集成,太阳能热利用及高效余热利用技术研究。

      分布式供能与可再生能源实验室的研究方向:
    (1)多能源互补的分布式能源系统:分布式系统能量综合转换梯级利用;分布式总能系统集成理论与方法,微小型动力与余热吸收式制冷/热泵技术,及其他相关节能减排技术;
    (2)太阳能热利用技术:多能源品位互补梯级利用的高效能量转化机理,热互补与热化学互补方法与技术,系统集成理论与关键技术;
    (3)化工动力多联产与温室气体减排:燃料化学能梯级利用与CO2富集的协同机理,CO2减排与能量转化一体化原理与方法,系统集成创新和技术发展路线;
    (4)新型高效冷却与强化换热:金属流体与氦气换热的ADS二回路先进冷却技术,低阻高效紧凑式换热器设计与多参数优化理论,冷却系统集成,空化关键技术应用。

    我要咨询

      储能研发实验室的研究领域:主要从事大规模储能技术的研究与开发,特别是新型空气储能技术、蓄冷蓄热系统与材料、微型抽水蓄能系统等。

      储能研发实验室的研究方向:
    (1)新型空气储能技术:开展传统压缩空气、蓄热式压缩空气、液态空气、超临界空气储能系统关键技术的实验与数值模拟,研究开发具有自主知识产权的1-300MW新型空气储能系统,并进行工程示范与产业化;
    (2)蓄冷蓄热系统:开展适合于大规模应用的蓄冷蓄热系统与材料研究,包括蓄冷蓄热系统的设计、实验与数值模拟,蓄冷蓄热材料的热物性和热强度测量,新型微纳尺度蓄冷蓄热材料的研究等;
    (3)微型抽水蓄能系统:进行适合于城市使用的微型抽水蓄能系统的关键部件研发、系统集成和产业化。

    我要咨询
  • 传热传质实验室
  • 非线性力学国家重点实验室
  • 高温气体动力学国家重点实验室
  •  热传质实验室的研究领域:高强度传热及先进热物理测量。传热传质实验室的研究方向:(1)微纳结构材料/界面热输运及热物性:高导热、隔热、蓄热、强化表面及测试方法研究;
    (2)热压转换高强度传热:叶片无冷却气闭式高强度冷却机理及应用研究;
    (3)相变高强度传热:高温热管、微槽群、微通道机理及应用研究。

    我要咨询

    非线性力学国家重点实验室的中、长期学科方向为:
    (1)固体变形、损伤、破坏的非线性力学性质;
    (2)流体运动的非线性规律;
    (3)材料和环境系统中非线性问题的基本理论和方法。近年来,LNM确定以多尺度力学为研究主题,它包括材料强度及灾变的跨尺度关联和复杂流动的多过程耦合现象。

    我要咨询

      以空天科技发展为主要应用背景,致力于高温气体动力学的基础问题研究。实验室面向航空航天和国民经济的重大战略需求,以突破空天科技的关键技术为主要目标,研究在高温、高超声速极端条件下,具有分子振动和转动激发、分子离解、电离等内态变化介质的复杂流动,完善高温气体动力学理论体系,支撑高超声速关键技术的突破。

      高温气体动力学国家重点实验室以开展高温气体流动的前瞻性、基础性和战略性研究为理念,以实现实验室科研目标从关键技术研究到关键技术集成研究的提升为宗旨,进一步优化布局实验室的科研团队,形成高温反应气体流动、超声速燃烧与推进技术、气动构型理论与优化设计、稀薄气体与非平衡流动、等离子体流动与清洁燃烧等五个相互支撑的主要研究方向。

    我要咨询
  • 国家微重力实验室
  • 流固耦合系统力学重点实验室
  • 先进制造工艺力学重点实验室
  •   作为微重力科学实验室,国家微重力实验室目前的研究领域涉及微重力科学的主要方向,包括微重力流体物理(简单流体的运动、多相流和复杂流体),微重力燃烧科学(燃烧机理和空间站防火),空间材料科学(凝固过程、晶体生长和模型化研究),空间生物技术与生命科学(生物力学、细胞-分子生物学和纳米生物技术),在流体物理、燃烧、生物力学和先进诊断技术,以及与材料科学和生命科学的交叉与融合等领域开展了有特色的创新性研究工作。

    我要咨询

      流固耦合广泛存在于自然现象、工程系统之中。流固耦合系统力学主要研究流体与固体相互作用规律,是建立在流体力学、固体力学等力学主要分支学科间的一门交叉学科。

      实验室以流体与工程结构的相互作用、流体与岩土体的相互作用、环境流动与多过程耦合以及油气水沙相互作用等四个方向为重点,多年来在海洋石油采输与分离技术、先进水中航行体、流域水环境与区域沉降、滑坡灾害监测和高速列车气动效应等方面作出了重要贡献,并形成了一支团结协作的高水平研究队伍。与此同时,立足自主创新,研发了系统配套的实验装置,并建设了大规模数值模拟平台和软件。实验室致力于促进系统力学这一新的力学研究思想,并为重大工程技术问题提供全新分析工具、变革性技术以及系统解决方案,为国家安全、国民经济和社会发展作出基础性、战略性和前瞻性贡献。

    我要咨询

      先进制造工艺力学重点实验室的研究定位与科学发展,秉承了钱学森先生创立的物理力学及其引申的工程科学思想、宏观认知上的系统科学观。实验室成立十余年间,在充分继承物理力学研究积累的基础上,通过有跨度的学科交叉、融合与会聚性的综合研究,集中聚焦空天飞行、先进交通与装备制造中的若干关键技术需求,取得了大量科学特色显著、工程先导影响明显的学术成就,包括激光毛化特种工艺及其工程化技术、物质表面涂镀层与强化工艺技术、激光制造工艺力学、激光焊接工艺技术、复杂飞行动力学与控制、机动车综合性能检测产业化技术等。实验室将继续在空天飞行、先进交通、装备制造等新的发展需求方面,以创造和前瞻带动为己任,着力于力学机理的新探索和关键性能可控机制的新发现,开展高性能制造核心工艺技术和复杂飞行控制的方法创新、技术创新和工程集成创新。

    我要咨询
  • 分子反应动力学国家重点实验室
  • 分子动态与稳态结构实验室
  • 高分子物理与化学实验室
  •   分子反应动力学是化学的前沿基础研究领域。它应用现代物理化学的先进分析方法,如激光、超高真空、光电子检测技术和计算技术等,在原子、分子的层次上研究不同状态下,如气相、凝聚相及界面体系等,和不同分子体系中,如单分子、双分子、纳米团簇和其他分子聚集体等,的基元化学反应的动态结构,反应过程和反应机理。

      实验室的研究方向不仅可以阐明分子反应过程中各种瞬态物种的结构、性质和作用,并能以态-态反应动力学,以及对分子相干态之间的作用的深入研究来阐明化学反应的内在规律。逐步从早期的研究气相化学中的基元化学反应,逐步发展到了对凝聚相和界面等领域中的分子相互作用和化学动态过程的研究,从而产生出了飞秒激光化学、非线性光学等新的研究方向。

    我要咨询

      实验室的目标是在分子动态与稳态结构的基础研究及应用基础研究方面取得具有创新性的重要成果,成为国际结构化学研究领域具有重要影响力的研究中心及团体之一。重点实验室化学所部分的主要研究方向为复杂体系分子动态学与动态结构化学。目前实验室的主要研究领域包括:大气物理化学、团簇化学与分子多相催化、生物体系中自由基行为及其生理功能的分子机制、复杂分子体系量子动力学的理论研究、结构化学生物学、介观凝聚态及质谱光谱学、理论金属有机化学与均相催化、功能体系的结构、表面和过程研究等。

    我要咨询

      实验室面向国际科学前沿、结合国家经济需求,开展高分子化学与物理的相关基础科学与应用基础研究。研究领域涉及高分子的合成与表征,高分子多尺度相态、图案化和微观加工过程,高分子结构、动态及动力学,流变学性能及加工工艺,生物相容性和环境友好高分子系统,高分子凝聚态理论,计算及分子模拟等领域。同时开展高性能高分子材料、智能高分子材料、生物医用高分子材料、环境友好高分子材料等研究。

    我要咨询
  • 有机固体实验室
  • 光化学实验室
  • 分子纳米结构与纳米技术实验室
  •   有机固体研究主要探讨有机功能分子的聚集态结构、光电磁等物理性能以及它们在器件方面的应用,涉及化学、物理、电子学等学科,属前沿交叉研究领域。

      有机固体重点实验室的研究方向为设计、合成新型有机分子和高分子,研究其聚集态的结构,分子间的相互作用,电子行为及相关现象,开展特殊物理、化学性质及分子器件等方面的研究。主要研究内容包括:
    (1)分子材料的基础研究;
    (2)分子材料中重要的物理化学现象和过程的研究;
    (3)分子材料中微尺度效应的研究;
    (4)分子器件的探索研究。有机固体重点实验室的研究方向和目标与中国科学院在新材料和纳米科技等方面的学科布局相一致,是中国科学院化学所在分子聚集体化学和纳米科技等研究领域的重要组成部分。

    我要咨询

      实验室的研究方向为:有机及生物光化学;光功能材料与光电化学;光催化及环境光化学。

      其研究的主要内容有:
    1)与光功能、光电功能有关的各种无机、有机和高分子化合物的合成和制备,
    2)各种有机分子、无机半导体、超分子体系、纳米体系和与生命过程相关体系的光化学反应研究,
    3)利用瞬态光谱、超高压装置、原子力显微镜等高时、空分析技术进行的分子和集合体的光化学动力学和动态学特性研究,
    4)光电功能体系、光催化体系和光敏化体系在环境治理、光能转换、信息存储与显示和光功能药物材料等方面的应用基础研究。

    我要咨询

      实验室现阶段的定位和发展目标是:研究分子纳米结构的构筑规律和物理化学特性,发展以SPM为主的纳米检测技术,探索分子纳米结构和纳米材料的若干可能应用,凝聚和培养纳米科学研究的优秀人才,形成一支在纳米科学领域中具有重要影响力的研究群体。

      实验室现阶段研究工作主要集中在以下六个既各具特色,而又互相联系、互相促进的研究方向:
    1.单分子、分子组装及分子纳米器件;
    2.生物分子检测表征与纳米生物学研究;
    3.先进碳纳米材料研究;
    4.环境保护纳米材料研究;
    5.能量转换与存储材料及器件研究;
    6.扫描探针技术及其它纳米检测的新技术和新方法。

    我要咨询
  • 胶体、界面与化学热力学实验室
  • 工程塑料实验室
  • 分子识别与功能实验室
  •   实验室致力于以分子或分子结构单元进行有序组装过程中所涉及的基础科学问题为主题,开展有重要前景的胶体、界面与化学热力学的基础研究。重点集中于仿生体系的分子组装与纳米结构体系设计;两亲分子的设计与组装;复杂流体化学热力学;功能胶体微粒的合成与应用;绿色介质体系的基本科学问题与应用。

    我要咨询

      实验室建设和发展初期以高分子复合材料和狭义的工程塑料研究为主;后逐渐扩展到多品种的高分子材料科学研究,如烯烃聚合催化剂的合成及可控聚合、高分子材料的增强增韧、塑料高性能化的新技术、苛刻环境中使用的先进高分子材料等方向。近年来,随着学科的发展和国民经济建设的需要,实验室增加了纳米复合材料、生物医用高分子材料、环境友好高分子材料和聚烯烃合金新材料的合成与制备等研究方向。

    我要咨询
    <

      实验室主要有两个研究方向:

      第一为分子识别与超分子化学研究:以分子识别为基础,构建具有显著特色的新颖主体分子(蝶烯、杯芳烃和环三藜芦烃等)和自组装体,发展具有特殊分子识别及组装性能的超分子体系;研究新型的弱相互作用力、以及分子识别与组装的本质和规律,并探索其在分子识别与传感、超分子催化和生物功能模拟等方面的应用研究。

      第二为选择性合成方法学与功能分子的合成研究:基于分子识别原理,发展富有特色的酶催化、仿生有机小分子催化和新型过渡金属催化体系,研究催化反应过程中分子识别、选择性调控的本质和规律,建立经济、绿色、实用的合成方法,并应用于具有重要生物活性分子和代表性功能有机分子的构建。

    我要咨询
  • 活体分析化学实验室
  • 绿色印刷实验室
  • 高技术材料实验室
  •   实验室的研究方向为:
    1.活体采样:动物模型、微透析采样、其他微创与无创技术;
    2.选择分析:生物电化学、肽识别、核酸识别、光学探针、大分子区域结构探测、表面等离子体共振及成像;
    3.分离分析:样品制备、毛细管电泳、微流控技术、生物色谱、高效高选择性生物分离介质、生物质谱、高灵敏检测;
    4.生物应用:活性生物分子在线、原位或在体分析,生物分子时空变化与功能关系;
    5.新型实验装置与仪器研制:硬件设计、软件编制等。

    我要咨询

      实验室的总体定位是面向国家可持续发展的战略需求,致力于对我国可持续发展具有重要意义的环境、能源与资源相关新材料研究;以打印、印刷技术为平台,以具有重要应用价值的新材料应用开发和产业化技术为导向,注重相关创新性应用基础研究;在绿色印刷材料和技术研究开发方面发展成为有特色和重要影响的实验室。

      实验室的研究方向是:
    1.C1分子催化与转化研究;
    2.有机信息记录材料;
    3.印刷材料与器件研究;
    4.新功能材料;
    5.环境友好高分子材料;
    6.防覆冰材料研究。

    我要咨询

      实验室主要致力于国家急需的、有重大战略需求的先进高技术材料的基础创新及应用基础研究,并将先进高技术材料的实际应用和技术转化工作协调发展。

      实验室的主要研究方向为:
    1.耐高温聚酰亚胺基体树脂及其碳纤维增强树脂基复合材料;
    2.耐高温聚酰亚胺工程塑料;
    3.高性能聚酰亚胺薄膜;
    4.耐热聚合物泡沫材料;
    5.微/光电子制造与封装用聚合物材料。

    我要咨询
  • 生命有机化学国家重点实验室
  • 金属有机化学国家重点实验室
  • 有机氟化学重点那实验室
  •   生命有机化学国家重点实验室以"基于有机小分子的化学生物学"为研究方向。集成利用现代有机合成化学、物理有机化学、结构生物学和计算生物学、分子生物学、细胞生物学和分子药理学等学科的研究手段和方法,发展具有重要生物活性的有机小分子,并阐明其与生物大分子的相互作用,为解析生物大分子的功能,阐明生命过程中的信息传递和分子识别等做出贡献,为新医药和新农用化学品的研发提供先导化合物;同时发展创制这些化合物的有机合成和生物合成的新方法。

      实验室以下述五个方向为主要研究内容:
    (1)具有重要生物活性的复杂天然产物的研究:针对具有抗癌、抗炎、抗菌以及神经活性的生物碱、环肽、甾体及糖类天然产物进行全合成、结构-活性关系、及其与靶分子的作用机制研究。
    (2)重要生命过程的小分子调节剂的研究:针对在细胞内外信号传导过程中的一些关键因子如G-蛋白偶联受体、蛋白激酶以及细胞凋亡过程和自吞噬过程,发展高活性、高选择性的小分子调节剂,并应用于了解生物大分子功能的研究。
    (3)有机小分子与生物大分子相互作用的结构生物学研究:利用单晶衍射、NMR和计算模拟等技术,研究生物大分子及其与活性小分子的复合物的结构和构象,在原子水平探讨活性小分子如药物分子作用的内在机制。
    (4)生物合成和组合生物合成研究:对具有重要生物活性的聚酮、聚肽及聚酮/聚肽杂合类天然产物,从克隆生物合成基因簇出发,在建立生物合成途径和阐明新型酶学机制的基础上,运用组合生物合成的策略获得结构类似物,以满足药物发现和发展过程中对于结构多样性的需求。
    (5)有机合成的方法学研究:针对具有重要生理活性的复杂分子的合成,发展新的催化和转化方法,并将它们用于复杂生物活性分子的全合成,以及临床医药、农药等化学品的工业化生产。

    我要咨询

      金属有机化学国家重点实验室定位在基础研究,围绕金属有机化学学科前沿领域和发展趋势,紧密结合材料、环境、能源、医药等方向的国家重大需求,探索金属-碳(氢)键的形成、转化及淬灭的基本规律,发展导向有机合成和聚合物合成的金属有机化学,建成国际上有重要影响的金属有机化学研究基地。

      设计合成具有新型功能结构的金属有机配合物,探索其结构及化学反应性能;研究金属-碳(氢)键的形成及其化学转化;开拓导向有机合成和聚合物合成的金属有机化学,发展新的金属促进或催化的高效高选择性反应,为合成化学工业的可持续发展提供相关的科学基础。

      实验室目前的主要研究方向为:
    (1)金属配合物的合成、结构与反应化学;
    (2)导向有机合成的金属有机化学;
    (3)金属催化的不对称反应;
    (4)导向聚合物合成的金属有机化学。

    我要咨询

      结合当前国际有机氟化学和氟材料学科的发展趋势以及我国国民经济和国防建设的需求,实验室确定的研究方向为:
    (1)含氟物质的新型合成及转化方法学研究,包括新型氟化试剂开发,以及氟化、氟烷基化、氟芳基化、氟烯基化、含氟砌块转化、选择性脱氟、含氟单体聚合等过程的先进方法学;
    (2)与我国资源、能源、环境、人口与健康、现代农业、国防等国家战略领域相关的重要含氟物质(包括含氟功能材料和含氟生物活性物质)的合成以及构效关系研究;
    (3)重要氟化学工业生产以及氟产业升级过程中的关键科学和技术问题研究。

    我要咨询
  • 天然产物有机合成化学重点实验室
  • 有机功能分子合成与组装化学重点实验室
  • 物理有机化学实验室
  •   历年来,天然产物有机合成化学重点实验室在天然产物研究方面取得了非常突出的成绩。例如在青蒿素的结构、全合成及反应的系统研究的基础上,我国自主开发出具有高效、速效和低毒的抗疟新药―青蒿素,被世界卫生组织推荐为21世纪首选抗疟临床药物,并被广泛地使用;在天然资源的合理利用方面,利用我国丰富的甾体资源发展了我国甾体口服避孕药物的合成医药工业,极大地推动了计划生育工作的开展;而在植物生长调节剂和昆虫性信息素的结构鉴定和合成方面的研究为我国的农业发展作出了突出贡献。实验室的主要研究内容:
    (1)手性碳的不对称合成研究;
    (2)高效手性催化剂的负载化与循环使用;
    (3)生物催化与生物转化研究;
    (4)手性药物分子的药理学研究。

    我要咨询

      有机功能分子合成与组装化学重点实验室发挥有机合成化学的创造性,致力于生物功能导向的功能有机分子、光电功能导向的功能有机分子及复合材料基体树脂导向的功能有机分子等研究领域。

      实验室的主要研究方向包括:功能分子的设计与合成、功能分子的可控组装以及功能分子的聚集态结构与性能。

    我要咨询

      物理有机化学实验室的主攻方向是利用化学和物理的手段探索有机分子,特别是具有生物活性和材料性质的有机分子的结构和性质关系,包括:有机分子之间的疏水亲脂相互作用;疏水亲脂相互作用促进的有机分子簇集、自卷曲和解簇集;有序分子聚集体的组装和分子识别等。

    我要咨询
  • 计算机化学与化学信息学实验室
  • 分析化学实验室
  • 仪器分析化学实验室
  •   计算机化学与化学信息学实验室主要从事计算理论化学、计算机化学与分子信息学的研究。计算机化学与分子信息学是近年来出现的将化学和信息科学融合成为最新研究前沿的交叉学科,涵盖了理论计算、新算法发展、新知识和新化学实体的发现以及化学虚拟现实等领域。

      实验室的主要研究工作包括:
    (1)波谱模拟与结构解析;
    (2)分子模拟与分子设计;
    (3)化学反应的分类与预测;
    (4)化学结构信息处理;
    (5)化学实验室信息管理系统。

    我要咨询

      分析化学实验室的主要任务是研究探讨各种分析方法并借助各种仪器设备为本所和其它科研单位提供通过化学计量认证的化学分析,包括:利用核磁共振,质谱及红外手段进行有机化合物的组成及分子结构分析;利用液相色谱、气相色谱、离子色谱及毛细管电泳等手段进行有机化合物的分离及分析;元素分析;有机化合物的定性及定量分析;有机化合物的化学物理参数的测定。

    我要咨询

      仪器分析化学实验室主要从事复杂样品的前处理、分离、检测技术和装置的研究,涉及环境、生物、公共安全、食品安全等多个领域。在分离检测技术方面,研究化学化工产品、天然产物、药物、矿产品、生物样品、食品、工业过程产物等复杂真实样品中特定组分(尤其是痕量组分)的分析测定方法。在分析仪器装置方面,主要从事小型/微型化仪器、便携式仪器以及特殊用途仪器的研制开发和应用。

      实验室的研究方向:
    (1)快速分离与检测研究组:离子迁移谱新方法和新仪器;飞行时间质谱新技术和新装置;新型电离技术及其应用;公共安全监测技术和应用;痕量化合物的光谱和质谱成像及其应用;纳米粒子测量新方法及其在大气科学中的应用;激光与物质相互作用及其在分析科学中的应用。
    (2)环境评价与分析研究组:复杂样品分离分析与痕量物质检测方法;分析分离材料与生物传感技术;有毒污染物监测技术;POPs污染消减控制方法与技术;持久性有机污染物的环境过程及生态风险评估。
    (3)微型仪器研究组:分析仪器关键部件和整机;高效样品前处理技术和装置;多维色谱分离技术。
    (4)化学传感研究组:比色阵列传感器技术及应用;环境中重金属离子污染物快速检测技术;环境中有毒阴离子污染物快速检测技术。

    我要咨询
  • 精细化工实验室
  • 催化基础国家重点实验室
  • 化学激光实验室
  •   精细化工实验室的研究领域:(1)均相不对称催化和生物活性的含氮化合物的全合成,主要研究芳香杂环化合物的不对称氢化;钯催化的不对称氢化;双功能醋酸银催化的不对称反应;不对称氢解反应;(2)杂环催化合成和不对称催化反应研究,主要研究含氮杂环的选择性合成研究;催化不饱和含氮化合物参与的环加成反应;不对称催化反应研究;(3)有机金属合成与催化,主要研究惰性化学键的催化活化;高活性过渡金属配合物催化剂研究;铁-催化的有机合成;(4)铜催化不对称反应研究,主要研究铜催化不对称炔丙基取代反应;铜催化不对称环加成反应;(5)金属络合物与分子活化研究,主要研究过渡金属有机络合物的合成;金属络合物与不饱和键的相互作用;金属催化C-H键活化与官能化;金属络合物中间体与底物相互作用;催化反应机理。

    我要咨询

      催化基础国家重点实验室以新催化反应、新催化材料和新催化表征技术研究为核心,以催化剂活性相、活性中心和反应机理原位表征基础研究为特色,在面向能源、环境和精细化学品合成等方面进行催化的应用基础研究。

      其中:(1)催化反应的探索,主要研究甲烷无氧芳构化反应;甲烷选择氧化反应;有机催化选择加氢反应;有机催化选择氧化反应;多相手性催化(环氧化、氢化、氢甲酰化、DA反应等;超深度脱硫和脱氮;CO,NOx,Sox,卤代烃和VOCs消除;烯烃环氧化绿色催化和催化过程;太阳能光催化反应制氢和消除污染物;甲醇及二甲醚的催化转化;含氧化合物及CO的低温完全氧化;酶催化及手性化合物合成。
    (2)催化材料的设计和制备,主要研究亚纳米孔和纳米孔催化材料;燃料电池催化材料;可见光区半导体光催化剂和光伏电池材料;微孔复合氧化物;负载型过渡金属氮化物,碳化物,磷化物和硫化物;透氧和透氢膜催化材料的制备;高温固体燃料电池材料;分子筛修饰和纳米分子筛的合成;氧化物担载的纳米金属催化剂;原子隔离分散的催化剂;多相手性催化剂。
    (3)催化研究新表征技术的发展,主要研究紫外共振拉曼光谱;原位固态核磁技术;激光诱导表面荧光光谱;光电子发射显微技术;时间分辨红外光谱,拉曼光谱和荧光光谱技术;多功能表面纳米探测技术;高分辨电子显微镜;高温X射线衍射仪;手性拉曼光谱。

    我要咨询

      化学激光实验室主要以短波长化学激光为研究方向,同时开展应用基础和应用研究。作为八六三重点实验室,化学激光实验室承担国家八六三短波长化学激光研究项目,设有超音速氧碘化学激光器、氧碘化学激光器新能源研究、氧碘化学激光器效率与光腔研究、光学元件加工与镀膜技术、化学激光新体系研究及测试技术、化学激光新型压力恢复系统技术等多项研究课题。该实验室在化学激光研究中取得了多项重大科技成果和奖励,许多研究成果处于国际先进水平。

      实验室的主要研究方向:
    (1)化学激光的高效化、实用化研究,包括新型高效化学能源研究;新型高效混合传能研究;新型压力恢复系统研究;化学燃料再生与重复使用。
    (2)化学激光的光束质量研究,包括适合化学激光的新型光学谐振腔研究;强光下的光束质量控制。
    (3)化学激光的新型工作模式,包括脉冲化学激光;化学激光倍频及喇曼频移。
    (4)化学激光新机理与新体系,包括全气相碘激光;O2(1S)及O2(1D)相关体系化学激光;碱金属体系化学激光;新型储能介质及新型出光体系。

    我要咨询
  • 分子反应动力学国家重点实验室
  • 航天催化与新材料实验室
  • 分离分析化学重点实验室
  •   分子反应动力学国家重点实验室的定位是:面向化学动力学前沿课题和国家需求,发展原创性的理论和研究方法,在原子、分子、量子态水平上理解化学反应的过程和机制,为与能源和环境等重要科学技术相关的化学反应过程的研究提供实验和理论基础。

      实验室的主要研究方向和目标:发展和利用国际先进的化学反应动力学实验技术和高精度动力学理论相结合的方法,深入细致地研究重要化学过程中的动力学机理,在原子、分子的层次和量子态分辨水平上揭示基本化学动力学规律,在分子反应动力学基础科学研究中做出重要创新成果,为重大科学技术进步提供基础知识支撑,保持反应动力学研究的国际领先地位,占据国际化学反应动力学研究的至高点。

      实验室的研究内容包括:
    (1)气相分子反应动力学;
    (2)分子团簇结构和光谱;
    (3)生物大分子结构及动力学;
    (4)表面光化学反应动力学;
    (5)液相超快动力学;
    (6)量子动力学理论发展与应用;(7)动力学实验研究新方法和仪器研制。

    我要咨询

      航天催化与新材料实验室结合航天航空需求,在吸波材料、相变材料、耗氧材料和热防护材料等领域也进行了广泛深入的研究,多种特种功能材料在航天和航空等领域获得实际应用。航天催化与新材料实验室以建设具有科技创新能力和辐射带动作用的航天材料工程中心为目标,不断开发新型航天航空催化剂,拓宽肼催化分解技术应用领域,重点发展无毒推进剂催化分解技术、凝胶推进剂催化分解技术和航天特种功能材料,大力加强学科基础建设,实现应用研究和基础研究并举。

      实验室的研究方向:新型肼分解催化剂研制以及在航天领域空间飞行器和航空领域飞机应急动力系统等的应用;过氧化氢、硝酸羟胺、煤油(醇)/过氧化氢等无毒推进剂催化分解技术的研究;凝胶推进剂催化分解技术的研究;肼分解催化剂结构和性能的关系特种吸附剂、高储能相变材料、新型吸波材料和隔热涂层材料等特种功能材料的研究;航天催化材料热化学和航天催化新材料基础研究;环保催化及催化新材料的研究;生物质转化制取有用化学品的研究;多孔金属有机化合物储氢材料的研究。

    我要咨询

      分离分析化学重点实验室的研究方向:
    (1)富集材料和方法研究,内容是针对最新的分离模式及研究动态,侧重发展新型多维色谱理论;研究新型分离介质中溶质的保留机制;建立基于色谱热力学和动力学规律的色谱保留值和峰形的快速获取与预测软件系统。针对实践中发现的新问题及新现象加以研究,找出规律,并进一步指导实践。研究制备色谱、模拟移动床、径向色谱等新型大规模工业色谱的输运特征;建立有特色的研究方法;构建相关模型,对分析方法的发展与制备色谱的放大规模化生产提供理论依据。
    (2)高效分离与表征研究,色谱作为分离科学的重要分支,其核心在于分离介质和柱技术。基于生物活性分子识别作用原理所研制和开发的蛋白A免疫吸附血液净化材料制备。发展高效、稳定的新型蛋白质分子印迹分离介质合成方法。以高丰度蛋白质为模板分子,制备高选择性的新型分子印迹整体柱、核-壳磁性分子印迹聚合物和分子印